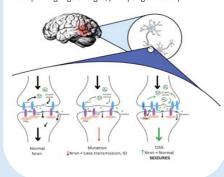
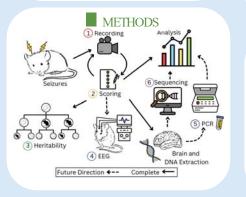
Effects of genotype, sex and age in seizure-like activity in transgenic mice

Anastasia Faustova

Supervised by: Richard Brown, Ian Weaver

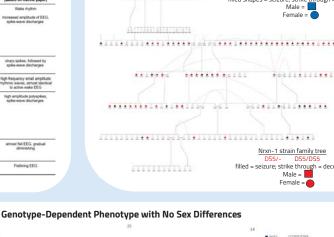

Department of Psychology and Neuroscience, Dalhousie University,

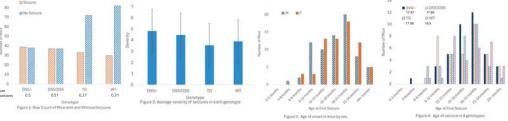

Halifax, Nova Scotia, Canada B3H 4R2

RESULTS

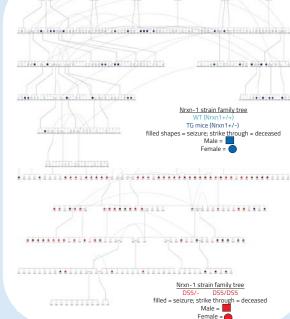
INTRODUCTION

Epilepsy affects 1% of the population[1] and is a condition involving neurons firing faster than normal in the brain, resulting in involuntary sensations and movement [2]. It can be caused by developmental issues, brain injury or genetic factors [2] and triggered by stress, toxins or brain injury [3]. Epilepsy is equally frequent in males and females [4]. It occurs most frequently in adults over 60 [5], or children (due to genetics) [6]. Neurexin-1 is a presynaptic molecule involved in cell adhesion; mutation in this gene is associated with various neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) [7]. Nrxn-1 interacts with proteins like post-synaptic Neuroligins [5] and membrane protein MDGA-2 [8]. Nrxn-1 model mice at the Brown Lab mouse colony at Dalhousie have been observed to have seizures mainly during cage changes, prompting this study.




Mouse Model Wild Type (Wt) - baseline C57BL6/J mice (Nrxn+/+) > Transgenic (Tg) - Nrxn-1+/- (knockdown - lower protein expression) [9] DS5/- - knockout Nrxn-1 + modification at splice site 5 -

- increased Nrxn-1 expression[9].
- DS5/DS5 two Splice Site 5 Nrxn-1 modified alleles.


Measuring Seizure Phenotypes in Mice

Score	Descriptor	Further elaboration	Hypothetical EEG (Based on Racine paper)
0	Baseline	Normal - no seizure	Wake rhythm
1	Whisker trembling	Whisker movements, possibly alongside normal motor movements	Increased amplitude of EEG, spike-wave discharges
2	Sudden Behavioral arrest	Stopped moving, staring off into space, some tail rigidity	
3	Facial jerking	Nose jerks, facial movements more severe than nose twitching, occurring after behavioral arrest	
4	Neck jerks	Head movements/twitches Sitting down No "arm reaches"	sharp spikes, followed by spike-wave discharges
5	Cionic seizure	Sitting position No loss of balance Arm reaches	high frequency small amplitude rhythmic waves, almost identica to active wake EEG
6	Clonic/Tonic clonic + Belly	Seizures on belly with arm reaches Loss of balance including leaps forward but not uncontrolled jumping May "fatten" against the floor	high ampitude polyspikes, spike wave discharges
t.	Clonio/Tonio-clonic - Side	Falling onto side Arm reaches	
8	Clanic/Tanic-clanic - wild jumping	Leaps through the air Spastic limb jerking	
9	Tonic extension	Extension of forelimbs (rapid twitching while on side) Usually it is a long recovery period after a level 6 setzure	almost flat EEG, gradual diminishing
	Manager Sciences and		

Non-Mendelian, Age-Related Inheritance

CONCLUSION > A new scale may be more useful for assessing spontaneous

NSERC

CRSNG

- seizures as opposed to kindling/chemically induced ones > There is no sex effect for proportion, seizure intensity or age of
- onset
- > Both DS5/- and DS5/DS5 mice have a higher seizure population proportion compared to the Tg and Wt mice, indicating an issue with the rescue model, as well as the association of Nrxn-1 with seizure activity.
- > The family tree analysis does not indicate a Mendelian pattern of inheritance; however, it shows older mice as having a high proportion of seizures, indicating an age effect. This may be related to the accumulation of Nrxn-1 with age.
- > Both the Nrxn-1 knockdown mice and the DS5 rescue mice can provide valuable insight into seizure occurrence and requires more exploration to determine these mice as a potential spontaneous seizure model.

FUTURE DIRECTION + LIMITATIONS

> Limitations:

- > Not every seizure was caught on camera, shorter seizures may have been missed.
- > Age of onset was indeterminate
- > No constant observation
- Future Direction
 - ≻ EEG (4)
 - > Sequencing (5) and Expression Levels (6)

REFERENCES

[1] Fiest et al., 2017. Neurology, 88(3), 296-303. 2] Bromfield et al., 2006, "In An Introduction to Epilepsy". Chapter 2 [3] Huff and Murr, 2023. NCBL [4] Reddy et al., 2021. Neuroscience Letters, 750, 135753. [5] Liu et al., 2022, Autism, 26(1), 33–50. [6] Vera-González, 2022, Epilepsy. Chapter 1
[7] Cuttler et al., 2021, Open Biology. [8] Bemben et al., 2023. bioRxiv.
[9] Lu et al., 2023, Cell Reports, 42(7), 112714. [10] Van Erum et al., 2019, Epilepsy & Behavior, 95, 51-55. [11] Harkin et al., 2017, Cerebral Cortex, Cer Cor, 27(1), 216-232

ACKNOWLEDGEMENTS

'This work was supported by Discovery Grants from NSERC to Drs. Brown and Weaver. Thank you to Dr Brown and the members of the Brown Lab: Mohammed Ali Ahmed, Salma Ismail, Wvatt Ortibus and Celia Glenham, as well as Dr. Weaver and members of the Weaver Lab. Special thanks to Kyle Roddick for his invaluable experience.